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Dr. André Klima StaBLab, LMU Munich

Prof. Dr. Helmut Küchenhoff StaBLab, LMU Munich

Alexander Bauer 1 / 17



Outline

1. Motivation

2. Methods

3. Technical implementation

4. Conclusion

Alexander Bauer 2 / 17



Outline

1. Motivation

2. Methods

3. Technical implementation

4. Conclusion

Alexander Bauer 2 / 17



Ê Motivation
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Forsa opinion poll, 20.09.2013

Questions of interest

• Which parties will pass the 5% hurdle and enter the parliament?

• Which parties will form the governing coalition?
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Ê Motivation

Reported voter shares (Forsa, last pre-election poll 2013)

Union SPD Greens FDP The Left Pirates AfD Others

40% 26% 10% 5% 9% 2% 4% 5%

Redistributed voter shares (based on 5% hurdle)

Union SPD Greens FDP The Left Pirates AfD Others

44.44% 28.89% 11.11% 5.56% 10.00% - - -

Media reports...

• sometimes state “Union-FDP miss joint majority with a seat share of 50%”

⇒ Problem 1: This completely neglects sample uncertainty

• usually report sample uncertainty à la “a 2.5% margin of error”

⇒ Problem 2: Uncertainty is hard to grasp
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Ê Motivation

We aim to do now-casting

We communicate sample uncertainty in a more natural way by calculating
event probabilities that fully reflect sample uncertainty.

We do not aim to do for-casting

• Our approach simply communicates sample uncertainty in a novel way

• Also, a relevant share of voters is still undecided shortly before election day
(Küchenhoff et al., 2018)
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Ë Methods

Estimating probabilities of events (POEs)

Given one opinion poll with sample size n:

X = (X1, . . . ,XP)T ∼ Multinomial(n, θ1, . . . , θP),

with voter counts Xj and the true percentage of voters θj per party j .

A Dirichlet posterior distribution results for θ|x :

θ|x ∼ Dirichlet(x1 + 1/2, . . . , xP + 1/2),

based on an uninformative Dirichlet prior (Gelman et al., 2013)

θ = (θ1, . . . , θP)T ∼ Dirichlet(α1, . . . , αP),

with α1 = . . . = αP =
1

2
.
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Ë Methods

Estimating probabilities of events (POEs)

Given the posterior distribution of voter shares we can use
Monte Carlo simulations to estimate POEs:

1. Simulate 10 000 election outcomes from the posterior
(adding uniformly distributed random noise to account for rounding errors)

2. If necessary: Redistribute voter shares to get obtained seats in parliament

3. POE = #events
number of simulations

Example

Given the Forsa poll, the coalition of Union-FDP obtained a majority of seats in
2 633 of 10 000 simulations

⇒ POE ≈ 26%
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Ë Methods

Visualization using ridgeline plots (Wilke, 2017)

Forsa, 09.01.2013
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Visualization using ridgeline plots (Wilke, 2017)
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I’m a .gif, click me (in Adobe Acrobat)!
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Ë Methods

Visualization using ridgeline plots (Wilke, 2017)

Forsa, 26.03.2013
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Ë Methods

Visualization using ridgeline plots (Wilke, 2017)
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Ë Methods

Pooling

We aggregate multiple polls to reduce sample uncertainty.
In case of multiple random samples:

(∑
i

Xi1, . . . ,
∑
i

XiP

)T

∼ Multinomial

(∑
i

ni , θ1, . . . , θP

)
.

We account for correlations between polling agencies by using an
effective sample size (Hanley et al., 2003).

Example

Pooling two polls with 1 500 and 2 000 respondents we get an effective
sample size of neff = 2 341 (based on a strongest party share of 40%).
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Ë Methods

Pooling

We aggregate multiple polls to reduce sample uncertainty.
In case of multiple random samples:

(∑
i

Xi1, . . . ,
∑
i

XiP

)T

∼ Multinomial

(∑
i

ni , θ1, . . . , θP

)
.

We account for correlations between polling agencies by using an
effective sample size (Hanley et al., 2003).

Pooling in practice

• We only pool surveys published in the last 14 days

• We only include one survey per polling agency
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Ì Technical implementation

R package coalitions

Functionality

• Scrape wahlrecht.de for (new) polls

• Calculate pooled sample

• Sample from posterior distribution

• Redistribute votes below 5% threshold

and calculate parliament seats (e.g. based on method Sainte-Laguë-Schepers)

• Calculate coalition probabilities

More on github.com/adibender/coalitions
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Ì Technical implementation

Web-Interface

Communicating the results

1. Website koala.stat.uni-muenchen.de

⇒ Automatic updates scraping data from wahlrecht.de

2. Twitter @KOALA LMU

⇒ Automatic tweets of new results

3. Blog koala-blog.netlify.com

Technical implementation in R

• User interface was built with the shiny package

• Server is based on Shiny Server Open Source

• Tweets are sent with the twitteR package
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Í Conclusion

The KOALA approach

• New paradigm for opinion poll coverage

• Bayesian approach to now-cast POEs

• Sample uncertainty is reduced by pooling multiple polls

• Communication to the general public

• Keep in mind: We calculate now-casts, not for-casts
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