### Secondary data analysis in tourism research

### Alexander Bauer

Statistical Consulting Unit StaBLab, LMU Munich, Germany

Research seminar | March 28, 2019

Alexander Bauer 1 / 27

- 1. Statistical principles
- 2. Sample study 1: Terrorism and tourism in Israel
- 3. Sample study 2: Travel constraints
- 4. Sample study 3: TourIST
- 5. Other stuff: Visualization & Spatial aggregation levels
- 6. Open space for discussion

Alexander Bauer 2 / 27

### 1. Statistical principles

- 2. Sample study 1: Terrorism and tourism in Israel
- 3. Sample study 2: Travel constraints
- 4. Sample study 3: TourIST
- 5. Other stuff: Visualization & Spatial aggregation levels
- 6. Open space for discussion

Alexander Bauer 2 / 27

### **Statistical analyses** is an interplay between statistical methods and domain knowledge

 $\Rightarrow$  A statistical model is most often no blackbox. Think about what information you use, what the statistical method aims for and if the findings fit your expert knowledge

### Steps of a statistical analysis

- 1. Formulate your hypothesis / problem
  - (... and write it down!)
  - Figure out what data source is most appropriate (cross-sectional vs longitudinal; individual vs aggregated level)
- 3. Choose an appropriate statistical method
- 4. Analyse and evaluate the method
- 5. Interpretat and properly communicate the results

Alexander Bauer 3 / 2'

**Statistical analyses** is an interplay between statistical methods and domain knowledge

 $\Rightarrow$  A statistical model is most often no blackbox. Think about what information you use, what the statistical method aims for and if the findings fit your expert knowledge

### Steps of a statistical analysis

- ${\bf 1.} \ \ {\sf Formulate} \ \ {\sf your} \ \ {\sf hypothesis} \ \ / \ \ {\sf problem}$ 
  - (... and write it down!)
- Figure out what data source is most appropriate (cross-sectional vs longitudinal; individual vs aggregated level)
- 3. Choose an appropriate statistical method
- 4. Analyse and evaluate the method
- 5. Interpretat and properly communicate the results

Alexander Bauer 3 / 27

Use **secondary data** wherever possible.

Oftentimes money is spent more sensibly on buying in existing data resources than on conducting a new study yourself.

- What are your dependent, what are your independent variables?

  - What's your observational unit?
  - What's your target population?
  - It is necessary to account for control variables?

Alexander Bauer

Use **secondary data** wherever possible.

Oftentimes money is spent more sensibly on buying in existing data resources than on conducting a new study yourself.

### Figure out your research questions to figure out appropriate data sources:

- What are your dependent, what are your independent variables?
  - Or is there no dependent variable?
- What's your observational unit?
  - Is it an individual tourist for studying his motivation?
  - Is it a month in which you observe the aggregated tourist count?
- What's your target population?
  - Regional constraints? Time constraints?
- It is necessary to account for control variables?
   E.g., when analyzing the assocation of general travel intention and actual travel behavior, you should control for income etc.

Alexander Bauer 4 / 27

### Relevance vs significance

- Practicioners often aim for statistically significant results (based on hypothesis tests of regression models)
- Statistical significane as an established "objective" criterion if a finding can be generalized (e.g. to the whole population)
- However, significance doesn't tell you if the finding is substantially relevant
- ⇒ Keep the focus on judging the relevance of some correlation / difference / effect in your domain.
  - Significance is useful, but only of secondary interest!

Alexander Bauer 5 / 27

### Know your limits

Talking to a statistician is never bad...

- ... when formulating a research question (and discussing its practicability)
- ... when figuring out an appropriate data source
- ... when setting up a questionnaire (to prevent a survey that doesn't really fit your problem)
- ... when choosing an appropriate statistical model

Alexander Bauer 6 / 27

- 1. Statistical principles
- 2. Sample study 1: Terrorism and tourism in Israel
- 3. Sample study 2: Travel constraints
- 4. Sample study 3: TourIST
- 5. Other stuff: Visualization & Spatial aggregation levels
- 6. Open space for discussion

Alexander Bauer 7 / 27

### Terrorism and tourism in Israel: Analysis of the temporal scale

### Research questions

- 1. How big is the impact of terrorism on tourism in Israel?
- 2. Clarify the short-term and long-term effects of terrorism

### Data base

- Combination of different data sources
- Monthly data from 2000 to 2014
- Dependent variable: Monthly number of tourist arrivals in Israel
- Independent variable: Monthly number of deaths caused by terrorism
- Control variables: economic situation, holidays, etc.

Alexander Bauer 8 / 27

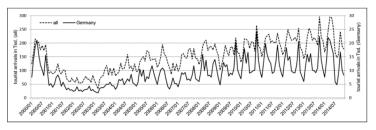



Figure 1. Tourism arrivals (total, Germany) in Israel (2000–2014) (based on CBS, 2000–2014). CBS: Central Bureau of Statistics Israel.

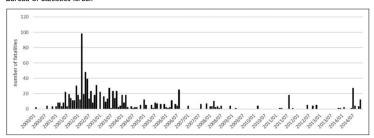



Figure 2. Terrorism in Israel (2000–2014).

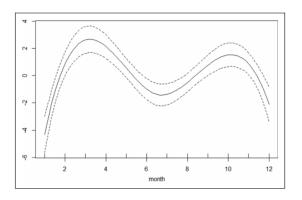

Alexander Bauer 9 / 27

Table 2. Results of research model with interaction effect.

| Parameter                                   | Estimate | p-value    |
|---------------------------------------------|----------|------------|
| Intercept                                   | 5.94     | 0.7456     |
| High_Season                                 | 6.94     | <0.0001*** |
| Terr_death_log2_lag0                        | -0.34    | 0.0241*    |
| Terr_death_log2_lag0 × High_Season          | 0.56     | 0.05       |
| Terr_death_log2_lagI                        | -0.23    | 0.1350     |
| Terr_death_log2_lag1 × High_Season          | -0.24    | 0.38       |
| Terr_death_log2_lag2to6months               | -0.38    | 0.1310     |
| Terr_death_log2_lag2to6months × High_Season | -1.71    | <0.0001*** |
| Long-term_Trend                             | 0.42     | <0.0001*** |
| Easter                                      | -0.23    | 0.7154     |

p < 0.05; \*\*p < 0.01; \*\*\*p < 0.001.

Alexander Bauer 10 / 2



Alexander Bauer 11 / 27

### Statistical analysis

- Time series data
  - ⇒ Neighbored monthly observations are correlated
- Regression model with nonlinear effects
- Adjusting for natural seasonality of tourist arrivals (both for general seasons and religious holidays)
- Instant and lagged effects of terrorism
- Evaluation of differences between high season and off-season

Alexander Bauer 12 / 2'

- 1. Statistical principles
- 2. Sample study 1: Terrorism and tourism in Israel
- 3. Sample study 2: Travel constraints
- 4. Sample study 3: TourIST
- 5. Other stuff: Visualization & Spatial aggregation levels
- 6. Open space for discussion

Alexander Bauer 13 / 2'

## What stops the world travel champions from travelling? The impact of travel constraints on German residents' travel frequencies

### Research questions

- 1. How do travel constraints affect travel frequency?
- 2. How does travel motivation affect travel frequency?
- 3. Are effects different, comparing actual travel frequency to travel intention?

### Data base

- representative individual level data for German residents
- 7 000 (face-to-face) to 12 000 (incl. online) respondents per year (1995–2019)

• information about travel intention, motivation and behavior

Alexander Bauer 14 / 27

### Travel constraints

### Inhalte der Reiseanalyse

Reiseintensität

Reisemotive

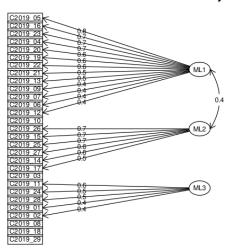
Urlaubsaktivitäten letzte 3 Jahre

Urlaubsziele letzte 3 Jahre

Reiseabsichten

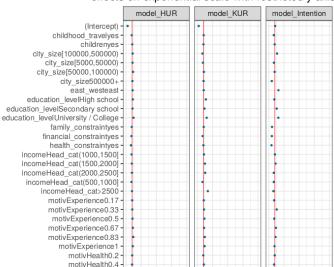
Informationssuche

Urlaubsformenpotenziale


Soziodemografie inkl. Sinus-Milieus®



Reiseziel
Reiseausgaben
Reisedauer
Reiseart
Organisationsform
Unterkunft
Verkehrsmittel
... und vieles mehr!


Alexander Bauer 15 / 27

### **Factor Analysis**



Alexander Bauer 16 / 27

### effects on exponential scale with restricted y axis



Alexander Bauer 17 / 27

### Travel constraints

### Statistical analysis

- Development of a wholistic model including travel motivations, constraints and sociodemography
- Generalized regression (binary and count data)
- Factor analysis
- Joint work of Geography and Statistics to ensure a suitable and interpretable model

Alexander Bauer 18 / 27

- 1. Statistical principles
- 2. Sample study 1: Terrorism and tourism in Israel
- 3. Sample study 2: Travel constraints
- 4. Sample study 3: TourIST
- 5. Other stuff: Visualization & Spatial aggregation levels
- 6. Open space for discussion

Alexander Bauer 19 / 2'



# Touristic behavior in a spatio-temporal context: Statistical analyses for the identification and development of behavior patterns

### Research questions

- 1. Detection of typical tourist groups
- 2. Analysis of spatial differences and temporal development

### Data base

Same as in sample study 2

Alexander Bauer 20 / 27

### **4** TourIST

### Statistical analysis

- Cross-sectional data over many years
  - ⇒ No track over personal developments, only of overall developments in the population
- Cluster analysis
   (purely based on tourist properties, excluding sociodemography)
- (Nonlinear) Regression with clusters as dependent variable
  - ⇒ "What traits are associated with ones tourist type" and "How do the typical tourist types change over time?"

Alexander Bauer 21 / 2'

- 1. Statistical principles
- 2. Sample study 1: Terrorism and tourism in Israel
- 3. Sample study 2: Travel constraints
- 4. Sample study 3: TourIST
- 5. Other stuff: Visualization & Spatial aggregation levels
- 6. Open space for discussion

Alexander Bauer 22 / 2'

### Getting a good feeling for your data (based on descriptives) is always the way to start a proper data analysis!

### Data visualization tools

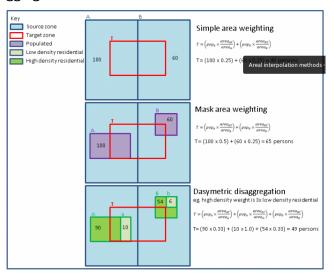
- SPSS for basic stuff
- Tableau for basic stuff plus better maps (see here) and the possibility to create interactive graphics and dashboards

It's free for academics: https://www.tableau.com/academic

Alexander Bauer

### Spatial aggregation levels

### General issue


- Combining data from different sources is often hard as of different spatial aggregation levels
- Solution to this problem is very application dependent
- Most common problem: Need to "downscale" highly aggregated data

⇒ Solution: **Spatial disaggregation** 

Alexander Bauer 24 / 27

### Spatial aggregation levels

### Spatial disaggregation



Source: http://www.integrated-assessment.eu/eu/guidebook/spatial\_disaggregation.html

Alexander Bauer 25 / 27

- 1. Statistical principles
- 2. Sample study 1: Terrorism and tourism in Israel
- 3. Sample study 2: Travel constraints
- 4. Sample study 3: TourIST
- 5. Other stuff: Visualization & Spatial aggregation levels
- 6. Open space for discussion

Alexander Bauer 26 / 27

\*Insert questions here\*

Alexander Bauer 27 / 27