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IgBasics

Application with data on seismic ground motion propagation
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Research

Question

Given the occurrence of a seismic event,
what are the driving forces for its strength?

Data
135 simulations of the 1994 Northridge (US) quake,

30s recordings of ground motion at ∼ 6000 seismometers
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IgBasics

Separating amplitude and phase
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IgBasics

Challenge incomplete curves
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IgBasics

Challenge incomplete curves
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Complete curve registration
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Complete curve registration

Common assumption: Processes are observed until their very end
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IgBasics

We want a method that ...

• is able to handle incomplete curves

• is able to handle non-Gaussian data

• includes a lower-dimensional representation of the registered curves

Challenge 1

Lack of registration methods for incomplete curves

Challenge 2

Registration methods often only applicable to specific data situations
Complete, Gaussian, densely observed curves on a regular grid

Challenge 3

Lack of good software packages for incomplete curve registration.
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Ig Incomplete Approach

Notation

Yi (t
∗
i ) curve of subject i = 1, . . . ,N, observed over

chronological time domain T ∗
i = [t∗min,i , t

∗
max,i ]

T = [0, 1] internal time domain, with T ∗
i ⊆ T ∀ i

h−1
i : T ∗

i 7→ T inverse warping functions

Yi (t) = Yi

(
h−1
i (t∗i )

)
aligned curve of subject i

ni number of measurements for curve i

T ∗
i = [t∗min,i , 1] leading incompleteness

T ∗
i = [0, t∗max,i ] trailing incompleteness

T ∗
i = [t∗min,i , t

∗
max,i ] full incompleteness

Alexander Bauer 5 / 20



Ig Incomplete Approach

Notation

Yi (t
∗
i ) curve of subject i = 1, . . . ,N, observed over

chronological time domain T ∗
i = [t∗min,i , t

∗
max,i ]

T = [0, 1] internal time domain, with T ∗
i ⊆ T ∀ i

h−1
i : T ∗

i 7→ T inverse warping functions

Yi (t) = Yi

(
h−1
i (t∗i )

)
aligned curve of subject i

ni number of measurements for curve i

T ∗
i = [t∗min,i , 1] leading incompleteness

T ∗
i = [0, t∗max,i ] trailing incompleteness

T ∗
i = [t∗min,i , t

∗
max,i ] full incompleteness

Alexander Bauer 5 / 20



Ig Incomplete Approach

Only few approaches exist for registering incomplete curves

• Dynamic Time Warping methods developed for matching time series

E Computationally quite expensive & mostly very heuristic algorithms

• Bayesian approach for fragmented functional data Matuk et al. (2019)

E Computationally quite expensive

• SRVF-based approach for elastic partial matching Bryner & Srivastava (2021)

based on the Square-Root Velocity Function framework

◦ Joint estimation scheme for complete curve SRVF and linear domain scaling

E Limited to continuous data & based on derivatives

Extend the complete curve likelihood-based framework of Wrobel et al. (2019)

✓ Applicable for exponential family distributions

✓ Joint estimation scheme with Gaussian or Binomial FPCA

Alexander Bauer 6 / 20



Ig Incomplete Approach

Only few approaches exist for registering incomplete curves

• Dynamic Time Warping methods developed for matching time series

E Computationally quite expensive & mostly very heuristic algorithms

• Bayesian approach for fragmented functional data Matuk et al. (2019)

E Computationally quite expensive

• SRVF-based approach for elastic partial matching Bryner & Srivastava (2021)

based on the Square-Root Velocity Function framework

◦ Joint estimation scheme for complete curve SRVF and linear domain scaling

E Limited to continuous data & based on derivatives

Extend the complete curve likelihood-based framework of Wrobel et al. (2019)

✓ Applicable for exponential family distributions

✓ Joint estimation scheme with Gaussian or Binomial FPCA

Alexander Bauer 6 / 20



Ig Incomplete Approach

Aim: Map the chronological domains T ∗
i onto the registered domain T

⇒ Inverse warping functions h−1
i map curve Yi (t

∗
i ) onto a template µi (t):

E
[
Yi

(
h−1
i (t∗i )

)
|h−1

i

]
= µi (t) .

tmin

tmax

tmin
* tmax

*

t* [observed]

t [
re

gi
st

er
ed

]

⇒ Warping functions have to be monotone and domain-preserving
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Ig Incomplete Approach

Low-dimensional B-spline representation of inverse warping functions:

h−1
i (t∗i ) = Θh(t

∗
i )βi

Notation

Θh design matrix of Kh basis functions, ∈ Rni×Kh

βi coefficient vector, ∈ RKh×1
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Ig Incomplete Approach

Low-dimensional B-spline representation of inverse warping functions:

h−1
i (t∗i ) = Θh(t

∗
i )βi

Optimization of the exponential family log-likelihood for curve i :

ℓ
(
h−1
i |yi , µi

)
= log

 ni∏
j=1

fi,j
[
yi (t

∗
i,j)

] ,

with fi,j(·) the corresponding density with expected value µi

(
h−1
i (t∗i,j)

)
,

and conditional independence

• across functions [Yi ⊥ Yi ′ ] |µi , µi ′ ,

• within functions [Yi (tij) ⊥ Yi (tik)] |µi .
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Ig Incomplete Approach

Ensure reasonable warping functions h−1
i (t∗i )

• A constrained optimizer ensures monotony and domain-preservation ✓

• Further, they should produce scientifically reasonable distortions
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Ig Incomplete Approach

Circumventing fixed time intervals

• Allow warping functions to start and / or end anywhere in the overall domain

• Penalize how much the duration of the (observed) time domain is warped

Penalized log-likelihood for full incompleteness

ℓpen
(
h−1
i |yi , µi

)
= ℓ

(
h−1
i |yi , µi

)
− λ · ni · pen

(
h−1
i

)
,

with pen
(
h−1
i

)
=

([
h−1
i (t∗max,i )− h−1

i (t∗min,i )
]
−
[
t∗max,i − t∗min,i

])2
.

Simplification for trailing incompleteness (with h−1
i (t∗min,i ) = t∗min,i ∀ i):

pen
(
h−1
i

)
=

[
h−1
i (t∗max,i )− t∗max,i

]2
.
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Ig Incomplete Approach

Manually choose λ based on domain knowledge

Example: Using a way too high value, λ = 10
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Ig Incomplete Approach

Manually choose λ based on domain knowledge

Example: Using a too high value, λ = 1
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Ig Incomplete Approach

Manually choose λ based on domain knowledge

Example: Using a too low value, λ = 0
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Ig Incomplete Approach

Manually choose λ based on domain knowledge

Example: Using a fitting value, λ = 0.25
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IgGeneralized FPCA

Concept of Functional Principal Component Analysis

• Estimation of main modes of variation around the mean curve

• Can be performed similarly to scalar PCA
taking the eigenvalues of the covariance structure

Example: Canadian weather data Ramsay & Silverman (2005)
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IgGeneralized FPCA

Concept of Functional Principal Component Analysis

• Estimation of main modes of variation around the mean curve

• Can be performed similarly to scalar PCA
taking the eigenvalues of the covariance structure

Example: Canadian weather data Ramsay & Silverman (2005)
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IgGeneralized FPCA

Adapt the two-step approach of Gertheiss et al. (2017)

Combination of a nonparametric covariance estimator and a Functional Mixed Model

✓ Applicable to diverse exponential family settings

✓ Availability of efficient, robust software

Central sources of bias for incomplete curves

◦ Poor coverage of the overall domain

◦ Violation of MCAR assumption

⇒ (Severe) bias of mean and covariance estimators Liebl & Rameseder (2019)

details on GFPCA estimation
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Ig Joint Approach

Iterative estimation algorithm Wrobel et al. (2019)

Aim:

• Registration of all observed curves Yi (t
∗
i ) to a comparable shape

• Low-rank representation of registered curves Yi (t) = Yi (h
−1
i (t∗i ))
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Ig Joint Approach

Iterative estimation algorithm Wrobel et al. (2019)

1. Initialize ĥ−1
i (t⋆)

[0]
: Register curves yi (t∗i ) to initial template µ(t)[0]

2. Iterate over index q = 0, 1, . . .

while
∑N

i=1

(∑ni
j=1

[
ĥ−1
i (t∗i,j)

[q] − ĥ−1
i (t∗i,j)

[q−1]
]2)

> ∆h

(i) Update GFPCA using registered curves yi
(
ĥ−1
i (t∗i )

[q−1]
)

(ii) Re-estimate GFPCA representations µi (t)
[q]

based on first K [q] FPCs explaining a share κvar of the total variance

(iii) Update estimates ĥ−1
i (t⋆)

[q]
by re-registering curves yi (t∗i ) to µi (t)

[q]

3. Final GFPCA estimation based on registered curves yi
(
ĥ−1
i (t∗i )

[q]
)

⇒ representations µi (t), based on K FPCs explaining a variance share ≥ κvar

details on template function choice
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ĥ−1
i (t∗i )

[q−1]
)

(ii) Re-estimate GFPCA representations µi (t)
[q]

based on first K [q] FPCs explaining a share κvar of the total variance

(iii) Update estimates ĥ−1
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IgSimulation Study

Simulation study

• Basis: Randomly warped (Gamma-transformed) Gaussian density
each setting is run 100 times with 100 curves

• Simulated weak or strong trailing incompleteness
Strong: Cut-off simulated in last 70% of the domain

• Amplitude rank ∈ {1, 2–3, 3–4}
also because perfect identifiability is only given for amplitude variation of rank 1
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IgSimulation Study – Gaussian structure

details on methods and measures
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IgSimulation Study – Gamma structure

details on methods and measures
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IgSimulation Study

Results

• Overall:
Incomplete curve methods better represent the joint variation structure

• Phase:
Incomplete curve methods better estimate the warping structure

• Amplitude:
FGAMM struggles with the estimation of the FPC structure

Further results

• Results are similar for weak and strong incompleteness

• Results are similar for settings with correlated amplitude and phase,
and correlated amplitude and incompleteness

• FGAMM approach computationally quite inefficient
Gamma runtime on 3000 curves, each with 50 measurements: ∼ 0:27h

details on runtimes
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Ig registr 2.0

• Joint registration and GFPCA

• Applicable for leading / trailing / full incompleteness

register fpca()
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Registration
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✓ Novel approach for incomplete curves
handling leading / trailing / full incompleteness

✓ Ability to handle non-Gaussian curves
on irregular, potentially sparse grids

✓ registr package
applicable to diverse data settings

99K Robust & intuitive penalization

99K Robust & efficient covariance estimation

99K Analysis of seismic amplitude and phase
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IgBasics

Application with data on seismic ground motion propagation

Research

Question

Given the occurrence of a seismic event,
what are the driving forces for its strength?
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IgBasics

Basic structure of registration algorithms

1. Choose a template function

2. Choose a reasonable objective function

3. Optimize wrt. ensuring the well-definedness of warping functions

Amplitude variation Phase variation
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Warping functions
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Ig Incomplete Approach

Manually choose λ based on domain knowledge

Example: Berkeley child growth data with simulated trailing incompleteness
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Ig Incomplete Approach

Manually choose λ based on domain knowledge

Example: Berkeley child growth data with simulated trailing incompleteness,
using a too small value, λ = 0.
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Ig Incomplete Approach

Manually choose λ based on domain knowledge

Example: Berkeley child growth data with simulated trailing incompleteness,
using a too high value, λ = 100.
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Ig Incomplete Approach

Manually choose λ based on domain knowledge

Example: Berkeley child growth data with simulated trailing incompleteness,
using a reasonable value, λ = 0.8.
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IgGeneralized FPCA

Two-step approach
applied to the registered curves Yi (t) = Yi

(
h−1
i (t∗i )

)
1. Estimation of FPCs ψk(t) based on a marginal method Hall et al. (2008)

2. Estimation of mean α(t) and FPC scores ci through a

Generalized Functional Additive Mixed Model Gertheiss et al. (2017)

E[Yi (t)] = µi (t) = g [Xi (t)],

Xi (t) ≈ α(t) +
K∑

k=1

ci,k · ψk(t),

Notation

K number of principal components

µi (t) conditional expected value of Yi (t)

g [Xi (t)] latent Gaussian process transformed with response function g(·)

details on GFPCA estimation
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IgGeneralized FPCA

Step 1 – Estimation of FPCs Hall et al. (2008)

based on E[Yi (t)] = g [Xi (t)]

1. Center curves Yi (t) based on a marginal estimate of µY (t) = E[Yi (t)]
by smoothing the data in a generalized additive model

2. Marginal estimation of the covariance:

Ĉov [Xi (s),Xi (t)] ≈
σ̂Y (s, t)

g (1)[µX (s)] · g (1)[µX (t)]
,

with

◦ σY (s, t) = E[Yc,i (s) · Yc,i (t)] based on centered curves Yc,i (t),

with σY (s1, s2) the mean of all pairwise products yc,i (s1) · yc,i (s2),
and σ̂Y (s, t) a smoothed version of σY (s, t) using a tensor product P-spline basis

◦ the marginal mean µX (t) estimated accordingly to µY (t),

◦ g (1)(·) the first derivative of the response function.

3. Spectral decomposition to yield FPCs ψk(t) and associated eigenvalues τk
back to GFPCA estimation
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IgGeneralized FPCA

Step 2 – Estimation of FPC scores Gertheiss et al. (2017)

Estimation of mean α(t) and FPC scores ci conditional on ψk(t)

in a Generalized Functional Additive Mixed Model:

g [µi (t)] = α(t) +
K∑

k=1

ci,k · ψk(t),

with the ci,k ∼ N(0, τk) random effects in an FPC basis representation.

⇒ Use robust routines (gamm4 / lme4), highly efficient for many random effects

Notation

α(t) = Θαα smooth effect, with P-spline basis Θα and parameters α

back to GFPCA estimation
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IgGeneralized FPCA

Approaches for non-Gaussian FPCA

Most existing approaches either assume Gaussianity Stefanucci et al. (2018)

or perform a marginal, potentially biased estimation Gertheiss et al. (2017)

Adapt the two-step approach of Gertheiss et al. (2017)

Combination of a nonparametric covariance estimator and a Functional Mixed Model

✓ Applicable to diverse exponential family settings

✓ Availability of efficient, robust software
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IgGeneralized FPCA

Practical considerations

• Central sources of bias

◦ Poor coverage of the overall domain

◦ Violation of MCAR assumption

⇒ (Severe) bias of mean and covariance estimators Liebl & Rameseder (2019)

• Choosing the number of FPCs based on explained variance share κvar

◦ Explained shares of variance refer to the smoothed covariance surface

◦ Spectral decompositions often yield many subordinate FPCs
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IgGeneralized FPCA

Practical considerations

• Central sources of bias

◦ Poor coverage of the overall domain

◦ Violation of MCAR assumption

⇒ (Severe) bias of mean and covariance estimators Liebl & Rameseder (2019)

• Choosing the number of FPCs based on explained variance share κvar

⇒ Exclude such subordinate FPCs with minor explained shares of variance

Alexander Bauer 8 / 16



Ig Joint Approach

Choice of initial template function

back to the joint algorithm
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IgSimulation Study

Compared methods all performing joint registration and FPCA

SRVF Complete curve approach of Tucker (2014)

FGAMM Complete curve approach based on two-step GFPCA

FGAMM [inc.] ↪→ adapted for incomplete curves

varEM Complete curve approach of Wrobel et al. (2019)

varEM [inc.] ↪→ adapted for incomplete curves

Performance metrics based on Mean (Integrated) Squared Errors

MISEy Comparison of the simulated mean curves (before adding random

noise) and the representations based on the final FPCA solution

LVψ Metric ∈ [0, 1] quantifying the overlap of the simulated and

estimated FPC bases

MISEh Comparison of the simulated and estimated warping functions

MSEd Comparison of the simulated and estimated domain lengths
back to sim study results
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IgSimulation Study

Median runtimes
for one setting of the simulation study with amplitude rank 2-3 and no incompleteness, based on

20 runs for each parameter combination.

D_i = 50, varying N N = 1000, varying D_i

N = 1000 N = 2000 N = 3000 D_i = 50 D_i = 100 D_i = 150
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back to sim study results
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IgSeismic Application
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• Focus on wave propagation in northwest direction and close to the hypocenter

• Focus on t∗0 as the time since the arrival of seismic P-waves

⇒ Joint approach with Gamma distribution and trailing incompleteness
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IgSeismic Application
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• Focus on wave propagation in northwest direction and close to the hypocenter

• Focus on t∗0 as the time since the arrival of seismic P-waves

⇒ Joint approach with Gamma distribution and trailing incompleteness
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IgSeismic Application

Seismic application – Estimation details

• Used penalization parameter λ = 0.004

• 10 joint iterations, taking overall 3:31h,
using a parallelized call for the registration steps with 5 cores

• The FPCs were chosen to explain 95% of amplitude variation
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IgSeismic Application

Curves and FPCs
with the first two FPCs visualized by the mean curve +/− 2 ·

√
τ̂k · ψk (t)

⇒ FPC 1 =̂ overall magnitude with two peaks caused by surface waves

⇒ FPC 2 =̂ salience of the initial peak
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IgSeismic Application

Heatmaps of estimated phase and amplitude variation
conditional on hypocentral distance and the dynamic coefficient of friction µd

⇒ Overall ground motion shows strong association with µd

⇒ Initial peaks are most pronounced at hypocentral distances ∼ 25km
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