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Basics

Application with data on seismic ground motion propagation

Typical observations

2

8

g hypocentral

E distance

g = small
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t[s]
Research Given the occurrence of a seismic event,
Question what are the driving forces for its strength?
Dat 135 simulations of the 1994 Northridge (US) quake,
ata

30s recordings of ground motion at ~ 6000 seismometers
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Basics

Separating amplitude and phase

Complete curves

y
t* [observed]
Amplitude variation Phase variation
Registered curves Warping functions
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t [registered] t* [observed]
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Basics

Challenge incomplete curves

Incomplete curves

t* [observed]
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Basics

Challenge incomplete curves

Complete curve registration Complete curve registration
=)
[
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o
| L - -~
t [registered] t* [observed]

Common assumption: Processes are observed until their very end
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Basics

We want a method that ...
e is able to handle incomplete curves
e is able to handle non-Gaussian data

e includes a lower-dimensional representation of the registered curves

Challenge 1

Lack of registration methods for incomplete curves

Challenge 2

Registration methods often only applicable to specific data situations
Complete, Gaussian, densely observed curves on a regular grid

Challenge 3

Lack of good software packages for incomplete curve registration.
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Novel Approach

Incomplete Curve
Registration

for non-Gaussian data

Bauer et al. (in revision)
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2. Novel Approach

2.1. Incomplete Curve Registration
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Incomplete Approach

Notation
Yi(t") curve of subject i =1,..., N, observed over
chronological time domain T} = [tr. . tr. |
T =10,1] internal time domain, with T C T Vi
hfl Tr =T inverse warping functions

Yi(t) = Y; (h '(t)) aligned curve of subject i
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Incomplete Approach

Notation

_[t

mln/‘ ]
= [0, t*

max, I]

[ mlnl’ maxl]

curve of subject i =1,..., N, observed over
chronological time domam T = [trinis tmaxcil

internal time domain, with T* C T Vi
inverse warping functions

aligned curve of subject /
number of measurements for curve i

leading incompleteness
trailing incompleteness
full incompleteness
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Incomplete Approach

Only few approaches exist for registering incomplete curves

e Dynamic Time Warping methods developed for matching time series

¢ Computationally quite expensive & mostly very heuristic algorithms

e Bayesian approach for fragmented functional data Matuk et al. (2019)
¢ Computationally quite expensive

e SRVF-based approach for elastic partial matching Bryner & Srivastava (2021)
based on the Square-Root Velocity Function framework

o Joint estimation scheme for complete curve SRVF and linear domain scaling

/ Limited to continuous data & based on derivatives

Alexander Bauer 6 /20



Incomplete Approach

Only few approaches exist for registering incomplete curves

e Dynamic Time Warping methods developed for matching time series

¢ Computationally quite expensive & mostly very heuristic algorithms

e Bayesian approach for fragmented functional data Matuk et al. (2019)
¢ Computationally quite expensive

e SRVF-based approach for elastic partial matching Bryner & Srivastava (2021)
based on the Square-Root Velocity Function framework

o Joint estimation scheme for complete curve SRVF and linear domain scaling

/ Limited to continuous data & based on derivatives

Extend the complete curve likelihood-based framework of Wrobel et al. (2019)
v  Applicable for exponential family distributions
v Joint estimation scheme with Gaussian or Binomial FPCA
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Incomplete Approach

Aim: Map the chronological domains T;* onto the registered domain T

= Inverse warping functions h-' map curve Yi(t;) onto a template 1;(t):

ELY; (b7 () [h7t] = i (1)

tnax

t [registered]

min tmax
t* [observed]

= Warping functions have to be monotone and domain-preserving
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Incomplete Approach

Low-dimensional B-spline representation of inverse warping functions:

hi(t) = ©n(t))B;

Notation

©®;  design matrix of K} basis functions, € Ry, xk,
Bi coefficient vector, € Rk, x1

Alexander Bauer
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Incomplete Approach

Low-dimensional B-spline representation of inverse warping functions:

hi 1 (t) = ©n(t))B;
Optimization of the exponential family log-likelihood for curve i:

(h i) = log | T fis va(ei)] |
j=1

with f; j(-) the corresponding density with expected value p; (h; (%)),
and conditional independence

e across functions [Y; L Y] |wi, pir,
e within functions [Y;(t;) L Yi(ti)] |-
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Incomplete Approach

Ensure reasonable warping functions h-'(t)
e A constrained optimizer ensures monotony and domain-preservation v/
e Further, they should produce scientifically reasonable distortions

Estimated warpings Registered curves
=1
I
Observed curves 3 y /—\
y
=
t* [observed] vag; y /

t* [observed] t [registered]
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Incomplete Approach

Circumventing fixed time intervals
e Allow warping functions to start and / or end anywhere in the overall domain

e Penalize how much the duration of the (observed) time domain is warped

Penalized log-likelihood for full incompleteness
Coen (B Myis i) = € (b7 Myi, i) = A+ i - pen (B,

with pen (hi_l) = ([hi_l(t:mm) - hi_l(t;in,i)] - [t:wax,i N t:win,i})2'

Alexander Bauer 10 / 20



Incomplete Approach

Circumventing fixed time intervals

e Allow warping functions to start and / or end anywhere in the overall domain

e Penalize how much the duration of the (observed) time domain is warped

Penalized log-likelihood for full incompleteness

Coen (B M yiy i) = € (7 yiopi) — A~ nj - pen (hY)

with pen (hi_l) = ([hi_l(t:mm) - hi_l(t;in,i)] - [t:wax,i N t:win,i})2'

Simplification for trailing incompleteness (with b *(t%. ;) = i, ; Vi):

min,i min,i

—
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~
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R
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pen (h; )
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Incomplete Approach

Manually choose ) based on domain knowledge

Example: Using a way too high value, A\ = 10

Observed curves Estimated warpings Registered curves

<
t [registered)]
<

t* [observed] t* [observed] t [registered]

Alexander Bauer 11 /20



Incomplete Approach

Manually choose ) based on domain knowledge

Example: Using a too high value, A =1

Observed curves Estimated warpings Registered curves

<
t [registered)]
<

t* [observed] t* [observed] t [registered]
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Incomplete Approach

Manually choose ) based on domain knowledge

Example: Using a too low value, A =0

Observed curves Estimated warpings Registered curves

<
t [registered)]
<

t* [observed] t* [observed] t [registered]
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Incomplete Approach

Manually choose ) based on domain knowledge

Example: Using a fitting value, A = 0.25

Observed curves Estimated warpings Registered curves

<
t [registered)]
<

t* [observed] t* [observed] t [registered]
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Generalized FPCA

Incomplete Curve
Registration

for non-Gaussian data

Bauer et al. (in revision)
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2. Novel Approach

2.2. Incomplete Curve GFPCA
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Generalized FPCA

Concept of Functional Principal Component Analysis

e Estimation of main modes of variation around the mean curve

e Can be performed similarly to scalar PCA
taking the eigenvalues of the covariance structure

Example: Canadian weather data Ramsay & Silverman (2005)

20

0 \
\ observation

— pointwise mean
/ p
-20

Average temperature [°C]
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Generalized FPCA

Concept of Functional Principal Component Analysis

e Estimation of main modes of variation around the mean curve

e Can be performed similarly to scalar PCA
taking the eigenvalues of the covariance structure

Example: Canadian weather data Ramsay & Silverman (2005)

FPC 1 (77.2%) FPC 2 (16.7%)

Average temperature [°C]
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Generalized FPCA

Adapt the two-step approach of Gertheiss et al. (2017)

Combination of a nonparametric covariance estimator and a Functional Mixed Model

v  Applicable to diverse exponential family settings

v  Availability of efficient, robust software

Central sources of bias for incomplete curves

o Poor coverage of the overall domain
o Violation of MCAR assumption

= (Severe) bias of mean and covariance estimators Liebl & Rameseder (2019)

» details on GFPCA estimation

Alexander Bauer
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Joint Approach

Incomplete Curve
Registration

for non-Gaussian data

Bauer et al. (in revision)

N\

A
| EXEXA

registr 2.0

Wrobel & Bauer (2021)

2. Novel Approach

2.3. Joint Approach
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Joint Approach

Iterative estimation algorithm Wrobel et al. (2019)

Aim:
e Registration of all observed curves Y;(t}) to a comparable shape

o Low-rank representation of registered curves Yi(t) = Yi(h:(t}))

Alexander Bauer 14 / 20



Joint Approach

Iterative estimation algorithm Wrobel et al. (2019)

T [0 . X L [0]
1. Initialize h;7*(t*) ": Register curves y;(t) to initial template 1(t)

» details on template function choice

Alexander Bauer 14 / 20



Joint Approach

Iterative estimation algorithm Wrobel et al. (2019)

N 0
1. Initialize h; l(t*)[ I Register curves yi(t) to initial template y(£)"!
2. lterate over index ¢ = 0,1, ...
~ A~ _ 2
whie S, (7 [ )™ = i) ) ) >
(i) Update GFPCA using registered curves y; (Bfl(t,-*)[q_ll)

(ii) Re-estimate GFPCA representations 11(t)¥

based on first K19 FPCs explaining a share kyar of the total variance

(iii) Update estimates i\rfl(t*)[q] by re-registering curves yi(t;) to ui(t)

» details on template function choice
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Joint Approach

Iterative estimation algorithm Wrobel et al. (2019)

N 0
1. Initialize h; l(t*)[ I Register curves yi(t) to initial template y(£)"!
2. lterate over index ¢ = 0,1, ...
~ A~ _ 2
whie S, (7 [ )™ = i) ) ) >
(i) Update GFPCA using registered curves y; (Bfl(t,-*)[q_l])

(ii) Re-estimate GFPCA representations 11(t)¥
based on first K19 FPCs explaining a share kyar of the total variance

la] [a]

(iii) Update estimates h~*(t*)"" by re-registering curves y;(t") to ui(t)

3. Final GFPCA estimation based on registered curves y; (ﬁfl(t,-*)[q])

= representations u;(t), based on K FPCs explaining a variance share > kyar

» details on template function choice

Alexander Bauer
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Simulation Study

Incomplete Curve
Registration

for non-Gaussian data

Bauer et al. (in revision)

3. Simulation Study

registr 2.0

Wrobel & Bauer (2021)
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Simulation Study

Simulation study

e Basis: Randomly warped (Gamma-transformed) Gaussian density

each setting is run 100 times with 100 curves

e Simulated weak or strong trailing incompleteness
Strong: Cut-off simulated in last 70% of the domain

e Amplitude rank € {1, 2-3, 3-4}

also because perfect identifiability is only given for amplitude variation of rank 1

Raw curves before random warping
Gaussian structure

Randomly warped curves
Gaussian structure

Warping functions (and their mean)
Gaussian structure

value
t* [observed]

0.25 0.50

t [registered]

0.75 0.25 0.50

t* [observed]

0.75 0.25 0.50

t [registered]

0.75

Alexander Bauer
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Simulation Study

Simulation study
e Basis: Randomly warped (Gamma-transformed) Gaussian density
each setting is run 100 times with 100 curves
e Simulated weak or strong trailing incompleteness
Strong: Cut-off simulated in last 70% of the domain
e Amplitude rank € {1, 2-3, 3-4}

also because perfect identifiability is only given for amplitude variation of rank 1

Raw curves before random warping Randomly warped curves Warping functions (and their mean)
Gamma structure Gamma structure Gammma structure

value
t* [observed]
o
o
g

A0 N 0.25
T
0 0.00
0.00 025 050 075 1.00 0.00 0.25 050 075 1.00 0.00 0.25 050 075 1.00
t [registered] t* [observed] t [registered]
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Simulation Study — Gaussian structure

0.0100
0.0030
0.0010
0.0003

0.3000

0.1000

0.0300
0.0100

0.0030

0.0010

» details on methods and measures

MISE h 1-WVy MISE y

MSE d

complete curves strong incompleteness

é 0.0030
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=
0.0010
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£ SRVF £ FGAMM E3 FGAMM [inc.] 2 varEM [inc] £ varEM
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Simulation Study — Gamma structure

complete curves strong incompleteness
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» details on methods and measures
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Simulation Study

Results
e Overall:
Incomplete curve methods better represent the joint variation structure
e Phase:
Incomplete curve methods better estimate the warping structure
e Amplitude:
FGAMM struggles with the estimation of the FPC structure

Alexander Bauer 18 / 20



Simulation Study

Results

e Overall:
Incomplete curve methods better represent the joint variation structure

e Phase:
Incomplete curve methods better estimate the warping structure

e Amplitude:
FGAMM struggles with the estimation of the FPC structure

Further results
e Results are similar for weak and strong incompleteness

e Results are similar for settings with correlated amplitude and phase,
and correlated amplitude and incompleteness

e FGAMM approach computationally quite inefficient
Gamma runtime on 3000 curves, each with 50 measurements: ~ 0:27h

» details on runtimes

Alexander Bauer



registr 2.0

Incomplete Curve
Registration

for non-Gaussian data

Bauer et al. (in revision)

registr 2.0 4. Implementation in registr package

Wrobel & Bauer (2021)

Alexander Bauer 19 /20



registr 2.0

e Joint registration and GFPCA

e Applicable for leading / trailing / full incompleteness

register_fpca()

registr() gfpca_twoStep()

<
t [registered]

t [registered] t [observed] t [registered]
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Conclusion

Incomplete Curve
Registration

for non-Gaussian data

Bauer et al. (in revision)

. | XA
registr 2.0

Wrobel & Bauer (2021)

Novel approach for incomplete curves
handling leading / trailing / full incompleteness

Ability to handle non-Gaussian curves

on irregular, potentially sparse grids

registr package
applicable to diverse data settings

Alexander Bauer
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Conclusion

Incomplete Curve
Registration

for non-Gaussian data

Bauer et al. (in revision)

. | XA
registr 2.0

Wrobel & Bauer (2021)

Novel approach for incomplete curves
handling leading / trailing / full incompleteness

Ability to handle non-Gaussian curves

on irregular, potentially sparse grids

registr package
applicable to diverse data settings

Robust & intuitive penalization
Robust & efficient covariance estimation

Analysis of seismic amplitude and phase

Alexander Bauer
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Basics

Application with data on seismic ground motion propagation

what are the driving forces for its strength?

Research Given the occurrence of a seismic event,
Question

135 simulations of the 1994 Northridge (US) quake,

Dat . . :
o 30s recordings of ground motion at ~ 6000 seismometers
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Basics

Basic structure of registration algorithms
1. Choose a template function
2. Choose a reasonable objective function

3. Optimize wrt. ensuring the well-definedness of warping functions

Amplitude variation Phase variation
Registered curves Warping functions
B /
[
2
y Egj //
t [registered] t* [observed]
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Incomplete Approach

Manually choose ) based on domain knowledge

Example: Berkeley child growth data with simulated trailing incompleteness

n
o

© © 2
Derivative 2 b T
3 3 <
20 @ 10
I 10 e
0
I 0
5 10 15 5 10 15 0 5 10 15
t* [observed] t* [observed] t* [observed]
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Incomplete Approach

Manually choose ) based on domain knowledge

Example: Berkeley child growth data with simulated trailing incompleteness,
using a too small value, \ = 0.

Observed curves Warping functions

20

=)
IS
Q
% 10

10 _ g

~ = L5 >
0 = -
0 5 10 15 0 5 10 15
t* [observed] t* [observed]

Registered curves
20
10 k\.df
0 \
0 5 10 15

t [registered]
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Incomplete Approach

Manually choose ) based on domain knowledge

Example: Berkeley child growth data with simulated trailing incompleteness,
using a too high value, A = 100.

Observed curves Warping functions

i
o

20

t [registered]
s

\
B \\‘ﬁﬂs—~/—\
- = 5
0
0 5 10 15 0 5 10 15
t* [observed] t* [observed]

Registered curves
20

“’\W\

0 5 10 15
t [registered]
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Incomplete Approach

Manually choose ) based on domain knowledge

Example: Berkeley child growth data with simulated trailing incompleteness,
using a reasonable value, \ = 0.8.

Observed curves Warping functions

20

t [registered]
s

\
B \\‘ﬁﬂs—~/—\
- = 5
0
0 5 10 15 0 5 10 15
t* [observed] t* [observed]

Registered curves
20
10 \\W\

0 5 10 15
t [registered]
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Generalized FPCA

Two-step approach
applied to the registered curves Y; (t) = Y; (h'(t))

1. Estimation of FPCs v (t) based on a marginal method Hall et al. (2008)
2. Estimation of mean «(t) and FPC scores ¢; through a
Generalized Functional Additive Mixed Model Gertheiss et al. (2017)

E[Yi(t)] = ni(t) = g[Xi(t)],

K
Xi(t) =~ a(t) + Z Cik - Yi(t),
k=1

Notation
K number of principal components
pi(t) conditional expected value of Yj(t)

g[Xi(t)] latent Gaussian process transformed with response function g(-)

» details on GFPCA estimation

Alexander Bauer
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Generalized FPCA

Step 1 — Estimation of FPCs Hall et al. (2008)
based on E[Yi(t)] = g[Xi(t)]

1. Center curves Y;(t) based on a marginal estimate of uy(t) = E[Yi(t)]
by smoothing the data in a generalized additive model

2. Marginal estimation of the covariance:

fJ\'y(S7 t)
gW[ux(s)] - gWux(t)]’

C/O\V [Xi(s)a X/(t)] ~

with
o oy(s,t) = E[Y¢,i(s) - Ye,i(t)] based on centered curves Y¢ (t),

with oy (s1,s2) the mean of all pairwise products yc j(s1) - yc,i(s2),
and 6y (s, t) a smoothed version of oy (s, t) using a tensor product P-spline basis

o the marginal mean pux(t) estimated accordingly to py(t),

o gW(-) the first derivative of the response function.

3. Spectral decomposition to yield FPCs 1, (t) and associated eigenvalues 7«

» back to GFPCA estimation

Alexander Bauer
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Generalized FPCA

Step 2 — Estimation of FPC scores Gertheiss et al. (2017)

Estimation of mean «(t) and FPC scores c; conditional on v(t)

in a Generalized Functional Additive Mixed Model:
g [ri(t)] = aft) chk it

with the ¢; x ~ N(0, ) random effects in an FPC basis representation.

= Use robust routines (gamm4 / 1me4), highly efficient for many random effects

Notation

a(t) = ©,a smooth effect, with P-spline basis ®,, and parameters «

» back to GFPCA estimation

Alexander Bauer 6/
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Generalized FPCA

Approaches for non-Gaussian FPCA

Most existing approaches either assume Gaussianity Stefanucci et al. (2018)
or perform a marginal, potentially biased estimation Gertheiss et al. (2017)

Adapt the two-step approach of Gertheiss et al. (2017)

Combination of a nonparametric covariance estimator and a Functional Mixed Model

v  Applicable to diverse exponential family settings

v Availability of efficient, robust software

Alexander Bauer
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Generalized FPCA

Practical considerations

e Central sources of bias

o Poor coverage of the overall domain

o Violation of MCAR assumption

= (Severe) bias of mean and covariance estimators Liebl & Rameseder (2019)

e Choosing the number of FPCs based on explained variance share Ky,
o Explained shares of variance refer to the smoothed covariance surface

o Spectral decompositions often yield many subordinate FPCs

Alexander Bauer 8 /16



Generalized FPCA

Practical considerations

e Central sources of bias

o Poor coverage of the overall domain

o Violation of MCAR assumption

= (Severe) bias of mean and covariance estimators Liebl & Rameseder (2019)

e Choosing the number of FPCs based on explained variance share k.,

FPC 1 FPC2 FPC3 FPC 4 FPC5
PVE: 60.7% PVE: 19% PVE: 3.4% PVE: 0.5% PVE: 0.5%
1.0
@ 05 ﬁ l
>
g 00 Bt e e
>

-0.5

0 02505075 1 0 02505075 1 0 02505075 1 0 02505075 1 0 02505075 1
t

= Exclude such subordinate FPCs with minor explained shares of variance

Alexander Bauer



Joint Approach

Choice of initial template function

Observed curves
with template 1

Derivative

50 s
t [observed]

Registered curves

Derivative

s w0 s
tregistered]

Inverse warping functions.

tlregistered]

s 0 s
1" [observed)
FPG 1

o h\‘e‘\a

50 s
tlregistered]

Derivative

» back to the joint algorithm

Observed curves
with template 2

s w0 s
© [observed]

Registered curves

s w s
t[registered]

Inverse warping functions.

15
10 4
5w s
 [observed]
FPG 1
)

5 w0 s
t[registered]

Observed curves
with template 3

10
o
s 0 s
+ [observed]
Registered curves
3
o
o
s w0 s
tregisterec]
Inverse warping functions
1

s w0 s
1* [observed]
FPC 1

5w
t[registered]

Observed curves
with template 4

20
10
o
5 w0 s
© observed]
Registered curves
20

s w0
t[registered]

Inverse warping functions

5w
 observed]
FPG 1

5 w5
t[registered)

Alexander Bauer
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Simulation Study

Compared methods all performing joint registration and FPCA

SRVF Complete curve approach of Tucker (2014)

FGAMM Complete curve approach based on two-step GFPCA
FGAMM [inc.] < adapted for incomplete curves

varEM Complete curve approach of Wrobel et al. (2019)
varEM [inc ] — adapted for incomplete curves

Performance metrics based on Mean (Integrated) Squared Errors

MISE,  Comparison of the simulated mean curves (before adding random
noise) and the representations based on the final FPCA solution

LV, Metric € [0, 1] quantifying the overlap of the simulated and
estimated FPC bases

MISE,  Comparison of the simulated and estimated warping functions

MSE,;  Comparison of the simulated and estimated domain lengths

» back to sim study results

Alexander Bauer
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Simulation Study

Median runtimes

for one setting of the simulation study with amplitude rank 2-3 and no incompleteness, based on

20 runs for each parameter combination.

D_i =50, varying N N = 1000, varying D_i
»
e 3
20 // /(/
= ’
E K SRVF
;‘ ’ -»- varEM 1.0
£ varEM 2.1
€ - FGAMM
Z 10 - FGAMM (Gamma)
—_—°*
0

N = 1000 N = 2000 N = 3000 D_i=50 D_i=100 D_i=150

» back to sim study results

Alexander Bauer
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Seismic Application

3810 |

3805

3800

Northing [km]
@
&

3790

3785

330

340 350
Easting [km]

e Focus on wave propagation in northwest direction and close to the hypocenter

e Focus on t§ as the time since the arrival of seismic P-waves

=- Joint approach with Gamma distribution and trailing incompleteness

Alexander Bauer
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Seismic Application

o
=)
o
o

0 10 20 30
t;] [observed]

0 10 20 30
t' [observed]

@100 @ 100

E E

=75 =75

8 50 8 so0 hypocentral
[3 [ distance
2 25 2 25

e 2 — small
3 =1 — medium
3 g

o o

1) 1%

Qo Q

q 3

e Focus on wave propagation in northwest direction and close to the hypocenter

e Focus on tj as the time since the arrival of seismic P-waves

= Joint approach with Gamma distribution and trailing incompleteness

Alexander Bauer 13 / 16



Seismic Application

Seismic application — Estimation details
e Used penalization parameter A = 0.004

e 10 joint iterations, taking overall 3:31h,
using a parallelized call for the registration steps with 5 cores

e The FPCs were chosen to explain 95% of amplitude variation

Alexander Bauer
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Seismic Application

Curves and FPCs
with the first two FPCs visualized by the mean curve +/— 2 - /7 - 1k (t)

1.FPC 2.FPC

©
o

o
w

abs. ground velocity [m/s]
on log10 scale
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= FPC 1 = overall magnitude with two peaks caused by surface waves

= FPC 2 = salience of the initial peak
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Seismic Application

Heatmaps of estimated phase and amplitude variation

conditional on hypocentral distance and the dynamic coefficient of friction py

Scores for 1.FPC Scores for 2.FPC
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hypocentral distance [km] hypocentral distance [km]

mean l . mean l .

score-50-25 0 25 50 score -4 0 4

= Overall ground motion shows strong association with pig

= Initial peaks are most pronounced at hypocentral distances ~ 25km
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