
From Correlation to Causality

How to Assess the Validity of Epidemiological Studies

Dr. Alexander Bauer

Plant-Based Health Professionals UK www.statswithalex.com

Research question

The New York Times

Meat Increases Heart Risks, Latest Study Concludes

nytimes.com (03 February 2020), based on Zhong et al. (2020)

Research question

Meat Increases Heart Risks, Latest Study Concludes

nytimes.com (03 February 2020), based on Zhong et al. (2020)

Eat Less Red Meat, Scientists Said. Now Some Believe That Was Bad Advice.

nytimes.com (30 September 2019), based on Johnston et al. (2019)

Research question

The New York Times

Is Red Meat Bad for Your Heart? It May Depend on Who Funded the Study.

nytimes.com (20 May 2025), based on López-Moreno et al. (2025)

Research question

Survey time!

Question 1

What is your level of expertise regarding statistical analysis?


- 1 Let's not talk about it...
- 2 I can interpret basic statistics like medians and standard deviations
- 3 I can interpret more advanced analyses like regression models
- 4 I can plan and design some statistical aspects of studies
- 5 I can defend all statistical aspects of (my) studies

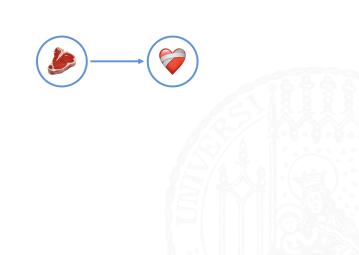
Question 2

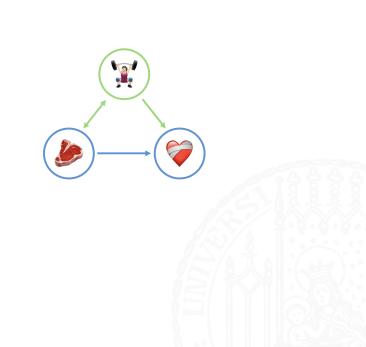

Would you feel confident in explaining the difference between substantial relevance (= effect sizes) and statistical significance (= p-values)?

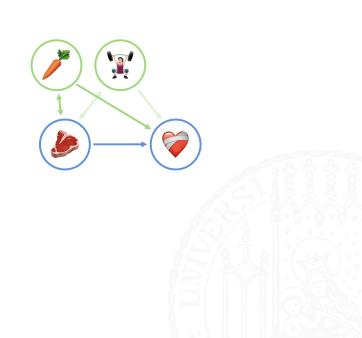
```
1 - No
```

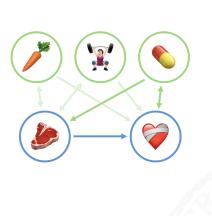
- 2 I could try
- 3 I think so
- 4 Yes!

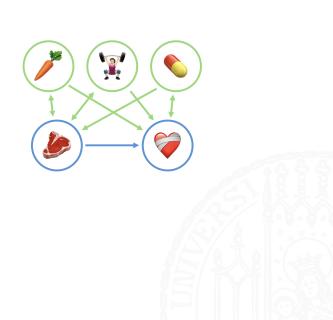
Research question

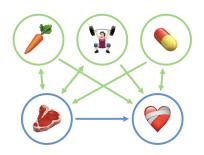



Research question


Does unprocessed red meat affect the risk for heart disease?


Challenge


Nutrition is complicated...



Are some studies better than others?

2. Correlation vs. causality

Are we estimating the pure effect of red meat?

3. Nutrition remains complex

Are we overinterpreting things?

Exemplary overview studies

Zhong et al. (2020)

"unprocessed red meat [...] was significantly associated with a small increased risk of incident CVD"

Sanders et al. (2024)

"no meaningful effect of daily unprocessed beef intake [...], except for a small effect [on] LDL-cholesterol'

Study designs for individual studies

Cross-sectional study

Case-control study

Prospective cohort study

Randomised Controlled Trial (RCT)

Study designs for individual studies

Cross-sectional study

One snapshot in time. No temporality "First X, then Y" \dots Diet information biased since only retrospective...

Case-control study

Prospective cohort study

Randomised Controlled Trial (RCT)

Study designs for individual studies

Cross-sectional study

One snapshot in time. No temporality "First X, then Y" \dots Diet information biased since only retrospective...

Case-control study

Useful for analysing rare diseases.

Diet information biased since only retrospective...

Prospective cohort study

Randomised Controlled Trial (RCT)

Study designs for individual studies

Cross-sectional study

One snapshot in time. No temporality "First X, then Y"... Diet information biased since only retrospective...

Case-control study

Diet information biased since only retrospective...

Prospective cohort study

Can suggest causality as of full observed temporality.

Costly and lengthy, but captures long-term effects (e.g., cancer risk).

Randomised Controlled Trial (RCT)

Study designs for individual studies

Cross-sectional study

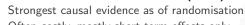
One snapshot in time. No temporality "First X, then Y"... Diet information biased since only retrospective...

Case-control study

Useful for analysing rare diseases.

Diet information biased since only retrospective...

Prospective cohort study



Can suggest causality as of full observed temporality.

Costly and lengthy, but captures long-term effects (e.g., cancer risk).

Randomised Controlled Trial (RCT)

Often costly, mostly short-term effects only.

Study designs for overview studies

Goal: Analysis of all (high quality) studies on a topic

Study designs for overview studies

Goal: Analysis of all (high quality) studies on a topic

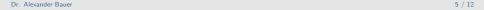
"What is the consensus among multiple studies?"

"Do studies agree on a research topic?"

"What is the average effect observed over all studies?"

Study designs for overview studies

Pure systematic review



Comprehensive summary of all evidence on a question.

Systematic review with meta analysis

Rating our exemplary studies

Zhong et al. (2020)

6 prospective cohort studies

Sanders et al. (2024)

20 randomised controlled trials

Rating our exemplary studies

Zhong et al. (2020)

6 prospective cohort studies

Sanders et al. (2024)

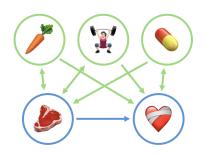
20 randomised controlled trials

⇒ Zhong is worse than Sanders since RCTs are better than cohort studies!

Rating our exemplary studies

Zhong et al. (2020)

6 prospective cohort studies (on long-term cardiovascular health)



Sanders et al. (2024)

20 randomised controlled trials (on short-term blood marker change)

- ⇒ **Zhong is worse than Sanders**since RCTs are better than cohort studies!
- ⇒ Zhong is (slightly) better than Sanders since focus is on diseases rather than short-term blood indicator changes

Causality

1. Study design

Are some studies better than others

2. Correlation vs. causality

Are we estimating the pure effect of red meat?

3. Nutrition remains complex

Are we overinterpreting things?

Causality

An effect can only be causal if ...

- temporality
 - ... the exposure precedes the outcome
- no confounding
 - ... the exposure is not mixed up with other factors

Causality

An effect can only be causal if ...

- temporality
 - ... the exposure precedes the outcome
- no confounding
 - ... the exposure is not mixed up with other factors

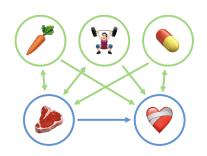
- ⇒ RCTs and prospective cohort studies both ensure temporality
- ⇒ Only RCTs can isolate the exposure. Cohort studies are susceptible to confounding!

Main limitations listed by our exemplary studies

Zhong et al. (2020)

6 prospective cohort studies (on long-term cardiovascular health)

"this study should not establish causality"



Sanders et al. (2024)

20 randomized controlled trials (on short-term blood marker change)

Evaluation only of beef

Interpretation

1. Study design

Are some studies better than others

2. Correlation vs. causality

Are we estimating the pure effect of red meat?

3. Nutrition remains complex

Are we overinterpreting things?

Substantial relevance vs. statistical significance

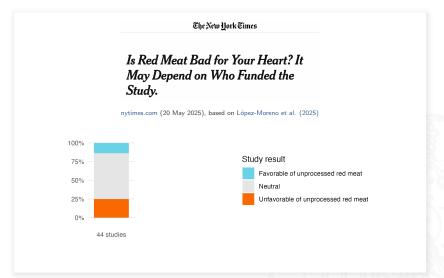
Substantial relevance vs. statistical significance

Zhong et al. (2020)

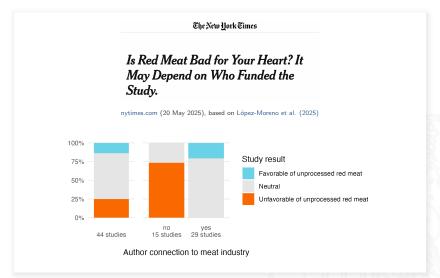
"Each additional 2 servings of unprocessed red meat consumed per week was significantly associated with incident CVD (Hazard Ratio 1.03 [...])"

⇒ a 3% risk increase might be irrelevant for individuals, but relevant on a societal level

Substantial relevance vs. statistical significance


Zhong et al. (2020)

"Each additional 2 servings of unprocessed red meat consumed per week was significantly associated with incident CVD (Hazard Ratio 1.03 [...])"


 \Rightarrow a 3% risk increase might be irrelevant for individuals, but relevant on a societal level

- ⇒ Interpret both, effect sizes (i.e., relevance) and uncertainty (i.e., significance)
- ⇒ Potentially differentiate between the individual level and the societal level

Exemplary systematic review

Exemplary systematic review

Interpretation

Exemplary systematic review

Asking different questions leads to different answers! even if the study design is similar...

Exemplary systematic review

Asking different questions leads to different answers! even if the study design is similar...

Independent studies

"mainly compared unprocessed red meat with plant protein."

Studies related to the red meat industry

"[typically compared] unprocessed red meat with animal protein or refined carbohydrates."

Take home messages

Nutrition is complicated, but ...

The simple answer

... systematic reviews generally communicate current (un)certainties well!

Nutrition is complicated, but ...

The simple answer

... systematic reviews generally communicate current (un)certainties well!

The more complex answer

- prioritise systematic reviews
- prioritise randomised controlled trials and prospective cohort studies
- check if results are only significant or also relevant
- check who funded the study

Further Reading

Study design

DiPietro, N. A. (2010). Methods in epidemiology: observational study designs. *Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy*, 30(10), 973-984.

Substantial relevance vs. statistical significance

Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: context, process, and purpose. *The American Statistician*, 70(2), 129-133.